
Prioritized Grammar Enumeration:
Symbolic Regression by Dynamic Programming

Tony Worm
Binghamton University

worm@binghamton.edu

Kenneth Chiu
Binghamton University

kchiu@cs.binghamton.edu

ABSTRACT
We introduce Prioritized Grammar Enumeration (PGE), a
deterministic Symbolic Regression (SR) algorithm using dy-
namic programming techniques. PGE maintains the tree-
based representation and Pareto non-dominated sorting from
Genetic Programming (GP), but replaces genetic operators
and random number use with grammar production rules and
systematic choices. PGE uses non-linear regression and ab-
stract parameters to fit the coefficients of an equation, ef-
fectively separating the exploration for form, from the opti-
mization of a form. Memoization enables PGE to evaluate
each point of the search space only once, and a Pareto Pri-
ority Queue provides direction to the search. Sorting and
simplification algorithms are used to transform candidate
expressions into a canonical form, reducing the size of the
search space. Our results show that PGE performs well on
22 benchmarks from the SR literature, returning exact for-
mulas in many cases. As a deterministic algorithm, PGE
offers reliability and reproducibility of results, a key aspect
to any system used by scientists at large. We believe PGE is
a capable SR implementation, following an alternative per-
spective we hope leads the community to new ideas.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[Dynamic Programming, Graph and tree search strategies];
G.2.1 [Combinatorics]: [Generating functions]; I.6.5 [Model
Development]: [Modeling methodologies]

General Terms
Algorithms, Performance, Reliability

Keywords
Symbolic Regression, Genetic Programming, Representation,
Grammar Enumeration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

1. INTRODUCTION
Symbolic Regression (SR) is a subproblem of Genetic Pro-

gramming (GP) which evolves equations to model observa-
tional data [19]. Despite two decades of research, SR still
has not become a mainstream technology the way linear and
non-linear regression have. GP, as the de facto algorithm
for SR, suffers from two limitations. First, state-of-the-art
GP implementations often fail to return the original formula
from which the input data was generated [17]. Second, the
results returned are inconsistent and difficult to reproduce.
A user who is not an expert in GP will not likely trust an
algorithm which cannot reliably reproduce the same results
with each invocation and leaves them to decide whether or
not to keep the results. GP’s difficulties stem from its non-
deterministic behavior and use of random number genera-
tion. To become a technology, SR will have to overcome the
issues brought on by non-determinism while reliably return-
ing correct answers to known problems.

This work introduces Prioritized Grammar Enumeration
(PGE), a deterministic SR algorithm. PGE reconsiders the
SR problem as an exploration within an abstract grammar.
Working with a grammar’s production rules, PGE prioritizes
the enumeration of expressions in that language. Starting
from simple basis functions, PGE searches by expanding the
best candidates into increasingly complex equations. Candi-
dates are selected from a Pareto Priority Queue to balance
the trade-off between accuracy and parsimony. New equa-
tions are generated from the current best through recursive
application of the grammar’s production rules, resulting in
all possible offspring within one production rule application.
PGE extends the SR search tree without the use of any ran-
dom number generation.

PGE drastically reduces the size of the search space, avoid-
ing invalid expressions and merging isomorphic representa-
tions with simplification and partial ordering. It memoizes
equations as it searches and discards equations which have
been previously encountered. PGE fits and evaluates each
unique equations once, fully optimizing each equation form
the first time it is discovered. By fitting abstract parameters
(placeholder coefficients without value) using non-linear re-
gression, PGE finds the ‘best’ version of an equation. This
effectively separates the search for form, from the optimiza-
tion of that form.

PGE’s foundations in dynamic programming and deter-
ministic execution result in an algorithm which will traverse
the same search path when given the same inputs. In doing
so, PGE offers exactly reproducible results with the reliabil-
ity of getting those results. We demonstrate PGE’s capa-

bilities on 22 benchmarks documented in[24]. PGE shows
good accuracy and returns exact expressions in many cases.
We postulate that PGE, in conjunction with standardized
benchmark problems, can be a benchmark against which SR
implementations can measure themselves.

2. RELATED WORK
Since Koza’s initial formulation of GP and SR [19], there

has been a plethora of research from generalized implemen-
tation enhancements to improvements addressing the issues
of disruptiveness of crossover, bloat, population diversity,
and premature convergence among many others. We cover
material which has relevance to our discussion, though it
will necessarily be abridged due to space limitations.

Selection is arguably the most important aspect of GP,
determining which solutions continue contributing to the
search and which results will ultimately be returned. The
Pareto non-dominated sort, or Pareto front, balances the
trade-off between opposing goals in multi-objective optimiza-
tion [5, 9, 33, 21, 30]. Various methods improve the di-
versity along the Pareto front, and/or maintain archives of
good solutions: NSGA-II [2], SPEA2 [35], SPEA2+ [12],
and PESA-II [1]. These algorithms all aim to improve the
quality of solutions in a population. Age Layered Popula-
tion Structure (ALPS) [10] partition the population by age
to restrict competition and breeding interactions, combating
premature convergence.

At the individual genome level, changes to representation,
crossover, and coefficient optimization have been explored.
Tree-based representation is standard, others include linear,
grammar-based [25], and graph or Cartesian GP [27]. In-
valid mathematical operations are removed in [11, 18] and
restricted by the grammar in TAG3P [8, 7, 6]. Addition-
ally, TAG3P only allows crossover points to be of the same
s-expression type. Context-aware crossover [22] selects a
snip in one tree and substitutes it at all valid locations in
the other parent. [15] extends this to include all possible
valid snip replacements from both parents. Semantically
Aware Crossover (SAC) [28] biases crossover to exchange se-
mantically different material and Semantic Similarity-based
Crossover (SSC) [32] extends this, by limiting the size of
material to small, manageable snips. Real-valued coefficient
optimization, a known difficulty for GP, has been improved
by local gradient search, non-linear regression, and swarm
intelligence [31, 29, 3].

Abstract Expression Grammar (AEG) [16], uses several
concurrent searches with state-of-the-art GP implementa-
tions. AEG replaces functions, variables, and coefficients
with abstract place-holders. These place-holders enable dif-
ferent optimization methods to focus on restricted subsec-
tions of the search space or parts of an expression. Param-
eters and restrictions to a SR method are encapsulated into
a SQL-like language, providing high level specifications and
fine-grained search control. Opening book rules allow each
island to be tailored to search a reduced area of the search
space, while closing book rules enable AEG to update the
constraints on islands which have stagnated. The author
states that designing closing book rules is time consuming,
were arrived at empirically, and often need to be tailored to
the SR system and problem at hand. AEG was shown to
make many problems tractable with current techniques [17].
Additionally, almost any SR algorithm can be used within
the AEG framework.

On a new front, Fast Function eXtraction (FFX) [23] is
a recently purposed SR implementation which does not use
genetic operators or a tree based representation. Instead,
FFX uses a Generalized Linear Model (GLM) of the form:

y = F (~x, ~w) =

B∑
b

wbfb(~x)

FFX learns a linear combination of b basis functions, from
1 → B, by applying pathwise regularized learning. Basis
functions are incrementally included and fit until the num-
ber of functional bases equals the desired model complexity.
The GLM is linear in coefficients, w.r.t. the terms of the
summation, though trigonometric, logarithmic, and other
non-linear functions are permitted. FFX is deterministic,
making no use of random number generation and is also com-
putationally efficient. FFX, however, suffers from two signif-
icant limitations: (1) there are no coefficients or parameters
within the bases, meaning more difficult, non-linear relation-
ships are beyond its abilities. This issue could be addressed
by using non-linear regression and abstract coefficients. (2)
individual terms of the summation are limited in complex-
ity to a pair-wise combination of uni-variate and bi-variate
bases determined at initialization. Seeding with increased
basis functions could become prohibitive as the number of
terms grows through pair-wise basis combinations. In the 13
variable example provided, the initial number of GLM basis
functions was 7100.

Candidate fitness metrics, methods for comparing imple-
mentations, and benchmark problems vary widely across the
GP field. Last year, [24] surveyed three years of literature
from EuroGP and GECCO GP track, bringing this issue
to the forefront of the community. Their aim was to start a
discussion on unifying and standardizing the evaluation pro-
cess in GP. We agree with these ideals and use 22 of their
SR target functions for the evaluation of PGE. Further, we
believe PGE can contribute to this effort, as a deterministic,
base-line algorithm, against which evolutionary methods can
measure themselves. We do, however, disagree with the as-
sumption in [24], that results should not be expected to be
repeatable, and thus unverifiable by a third party. A non-GP
practitioner will not likely use a tool which gives different an-
swers each time it is used. This has been partially addressed
by rate of convergence (how often an implementation finds
an answer) and cumulative probability of success (the prob-

 Prioritized Grammar Enumeration

Figure 1: The PGE Search Process

Figure 2: Grammar for Mathematical Equations

START → E
E → E + T | E ∗ T | T
T → T − N | T / N | N
N → Cos (E) | Sin (E) | Tan(E) |

Log (E) | Exp(E) | Sqrt (E) | L
L → (E) | −(E) | (E) ˆ(E) | TERM
TERM → Constant | Var iab le

ability that an ideal solution would be found on or prior to
generation i). Both of these methods require many trials.
Nevertheless, we agree that the optimum is less obtainable
and that a consensus needs to be reached on unbiased meth-
ods for comparison between different implementations.

3. PRIORITIZED GRAMMAR ENUMERA-
TION

Prioritized Grammar Enumeration (PGE) is a determin-
istic, dynamic programming algorithm for SR. Being largely
influenced by GP, PGE maintains the parse tree representa-
tion for equations and incorporates the Pareto non-dominated
sort. PGE diverges in how it organizes, explores, and pro-
cesses the search space. PGE replaces the genetic opera-
tors with grammar production rules and random selections
with well defined choices. In doing so, PGE becomes an
algorithm offering reliability and reproducibility that a non-
deterministic implementation cannot.

Figure 1 shows a pictorial representation of the PGE al-
gorithm. It is presented now to serve as a reference point as
the details are unveiled. Psuedocode is provided, at the end
of the section, after the necessary material has been covered.

3.1 Organizing the Search Space
Figure 2 is a grammar for mathematical equations and

the one we use in this work. A grammar, such as this one,
defines the search space which a SR implementation will ex-
plore. The terminals, non-terminals, and production rules
form the building blocks from which valid equations may be
constructed. Equations are composed of these basic com-
ponents to form the ‘DNA’ of an expression, a functional
genome that mirrors the parse tree for an equation. Opera-
tors (+ - * / sin exp etc.) are the internal nodes to the tree.
Operands are the terminals or leaves representing state vari-
ables, constants, and real-valued numbers. PGE, like AEG,
uses indexed coefficients, enabling these abstract parameters
to be optimized separately from the search for form.

PGE uses n-ary trees, where operands can have a variable
number of children. In the n-ary tree representation, the
associative operators can have n sub-trees, flattening and
reducing the tree’s size. This is a slight modification from
the usual binary tree; only affecting the associative operators
addition and multiplication. The n-ary tree does not change
the modeling ability of the equation, but will effect the trade-
off between parsimony and accuracy. This in turn effects the
selection operation of any SR implementation, though we do
not investigate this issue here.

In addition to the reductions in parse tree size, the n-ary
representation eases the design of sorting and simplification
algorithms. These algorithms, detailed next, work within
the parse tree to reshape equivalent trees into a canonical
form. This effectively merges isomorphic equations, reduc-
ing the size of the search space, while simultaneously adding
structure to the search space.

Reducing the Search Space
The size of the space defined by a grammar is infinite, even

when disregarding the increase brought by considering real
valued coefficients. This is the result of a grammar’s pro-
duction rules being applicable recursively and indefinitely.
Adding to the multiplicity, an equation will usually have sev-
eral derivations for each parse tree and isomorphs through
manipulations with basic algebra techniques. Consider the
equation a · b · c (Figure 3). This equation has 12 differ-
ent binary tree representations, from six leaf permutations
and two shape permutations. If we use both addition and
multiplication, this number of trees is 48.

As the number of operations, operands, and tree com-
plexity are increased, the size of the search space undergoes
a combinatorial explosion. To consolidate this space, PGE
imposes operator restrictions, simplifies equations, and par-
tially orders sub-expressions. When combined, these meth-
ods only allow syntactically valid equations to be considered,
merge isomorphic equations into a canonical form, reduce
the overall size of the search space, and create a structural
ordering to the search space.

Figure 3: Equation Tree Permutations

Operator restrictions, or interval arithmetic [11], disallow
invalid mathematics such as dividing by zero or taking the
logarithm of a negative number. In general, we wish to only
consider valid equations, however, there may be instances
when an invalid equation is an intermediary to a valid equa-
tion (log(x) → log(abs(x))). Though this issues is beyond
the scope of this paper, it deserves further investigation.

Simplifications group like terms together (x+ x), replace
sub-expressions which evaluate to a constant value (sinπ,
x
x

, or x− x), and reduce unnecessarily complex expressions

such as 1
1
x

. The resulting equations are equivalent, simpler

forms. There is debate as to how simplification effects the
SR process [14, 13, 26]. Certainly, changing the tree ef-
fects the Pareto trade-off which in turn has consequences
on selection and therefore search progress. Questions still
remain as to how much and which simplifications should be
applied, which forms of the equation should be kept, and
the overall effects simplification has on the search process.

Despite these questions, PGE still employs the use of the
aforementioned simplifications. This is done to eliminate
those sub-expressions which unnecessarily complicate equa-
tion and the overall search space. If they were not replaced,
many equivalent variations of a good equation could crowd
out other potential solutions, as they would be selected more
often. This would result in the algorithm stagnating in a lo-
cal optima of the search space. Simplifications effectively
trim out parts of the search space which are redundant, and
also return results which are more comprehensible.

Partial ordering of sub-expressions provides the necessary
machinery for comparing and thus sorting terms of asso-
ciative operators. In PGE, partial ordering is created by
placing a relative order on each building block type. Ter-
minals are less than non-terminals, variables are less than
constants, and unary functions are less than binary func-
tions. Since addition and multiplication are the only asso-
ciative operators, they are the only building blocks affected
by sorting of sub-expressions. Figure 3, right column, shows
the canonical form of a ·b ·c with a n-ary tree and sorting. If
a < b < c, then there is only one representation for each of
the expressions, reducing the original 48 to just 4. The sav-
ings created by sorting become larger as equations become
more complex.

Partial ordering, coupled with the n-ary tree represen-
tation and simplifications, yields many-fold reductions of
the search space. Invalid and ineffectual expressions are re-
moved, variations of associative forms are limited, and iso-
morphs are combined, shrinking the number of representable
equations that need to be explored by a SR implementation.
PGE takes reductionism one step further, fully optimizing
an equation in the search space the first time it is encoun-
tered and remembering which equations it has discovered
thus far. These features enable PGE to discard equations it
has already seen and is described next.

3.2 Evaluating Forms Once
At its core, PGE is a dynamic programming algorithm

which aims to evaluate each sub-problem once. In PGE and
SR, a sub-problem is a particular equation form, namely the
parse tree and its parameters or coefficients. The key to eval-
uating forms once is to fully optimize a form the first time
it is seen and to remember the forms which have already
been explored. PGE optimizes forms by fitting abstract pa-
rameters with non-linear regression and by recording which
equations it has already seen with a lookup trie.

Non-Linear Regression
Non-linear regression is not unique to PGE, or GP for

that matter, but it is a central component of PGE’s abil-
ity to evaluate an equation form once. As PGE encounters
new equation forms, it fits the abstract parameters using
non-linear regression, resulting in the ‘best’ version of that
form on the training data. PGE uses the Levmar C library
implementation of the Levenberg-Marquardt optimization
algorithm [20]. The analytical Jacobian version is used by
symbolically calculating the derivations of an equation w.r.t.
each coefficient. In cases were an equation is linear to the
coefficients, the Levmar library returns in one iteration by
using singular value decomposition (SVD). Training perfor-
mance is used as the metric for fitness comparison, along
with equation size, as is usual when using Pareto fronts.

The fully optimized form is later evaluated on unseen test-
ing data to provide an unbiased measure of accuracy.

PGE’s treatment of coefficients is in direct contrast to
the probabilistic optimization GP uses through its genetic
operators. Abstract parameters and non-linear regression
enables the separation of search for equation form, from op-
timization of a form’s parameters. This separation, in turn,
enables an equation form to be fully evaluated once, remov-
ing duplication of effort that GP experiences when using
genetic operators to optimizing the coefficients of an equa-
tion form.

Memoization of Equation Forms
In PGE, a sub-problem is equivalent to a particular equa-

tion form. Sub-problems are encountered when an equation
has several parse derivations and isomorphs to an equation
exist through algebraic manipulations. This means there
are multiple orderings of the production rules which result
in the same equation and that each equation may appear in
more than one form, as several equivalent points within a
grammar’s representable space.

Detecting previously encountered equations is the key to
the dynamic programming approach taken by PGE. The
memoization of form allows PGE to consider a form just
once. PGE matches equations by comparing the serialized
representation of the equations. Serialization transforms an
equation into a sequence of integers by assigning a unique
value to each node type. The resulting integer sequence is
equivalent to the prefix notation of the equation. Also, since
PGE uses abstract coefficients, they are all converted to the
same value. This means PGE only memoizes their existence
and location.

PGE uses a trie structure, implemented as an integer pre-
fix tree (IPT), for the lookup table of currently explored
equations. An equation serial is the key that the IPT uses
to return a boolean value, indicating if the respective equa-
tion is new or not. The IPT was inspired by the suffix tree
algorithm for string matching [34, 4]. The suffix tree algo-
rithm gives log-time lookup for string existence in a piece
of text. Similarly, the IPT provides log-time determina-
tion, w.r.t. the size of the equation alphabet (terminals &
non-terminals), and linear-time to the length of the serial (a
sequence of integers), as to whether an equation has been
encountered before. If the IPT is reasonably balanced, then
it has log-time w.r.t. the number of equations encountered
thus far, with worst case being linear-time.

Listing 4 provides the psuedocode for the IPT. The IPT is
a recursive structure which is iteratively built as new equa-
tions are encountered. To perform a lookup, and possible
insertion, a serial S and the root memoNode are passed to
the Insert function. At each recursive call, equivalently each
memoNode of the IPT and position in the serial S, the first
element of S (the current node type) is looked up in a bal-
anced binary tree (memoNode.next). If the node does not
exist, it implies that this serial has not been seen before, and
thus, that this is a new equation. When this happens, a new
memoNode is created and each successive recursive call will
produce a new memoNode. Recursion continues until the
serial has been completely traversed. If no new nodes have
been inserted, then it means that this equation has been
encountered before, and is subsequently discarded.

The IPT also tracks the number of total unique visits.
This allows PGE to report the total number of unique equa-

Figure 4: Memoziation Tree

s t r u c t memoNode {
i n t cu r r type
map [int , memoNode] next

i n t unique
}

func I n s e r t (S [] int , N memoNode) bool {
i n s e r t e d = f a l s e
in = N. next [S [0]]

// does t h i s branch e x i s t ?
i f in == n i l

in = new(memoNode)
in . cu r r type = S [0]
N. next [S [0]] = in
i n s e r t e d = true

// r e c u r s i v e c a l l to i n s e r t
i f l en (S) > 1

i n s e r t e d = I n s e r t (S [1 :] , in) | | i n s e r t e d

// v i s i t a t i o n account ing
i f i n s e r t e d == true

N. unique++

return i n s e r t e d
}

tions evaluated, which is the same as the total number of
equations evaluated in PGE. Due to the reductions of iso-
morphs to a canonical form, the reported amount of space
explored by PGE is much larger in the original, unreduced
search space. To our knowledge, no one has before reported
the unique number of equations evaluated. The IPT is eas-
ily incorporated into almost any SR implementation, and
we believe that it can improve the reporting of the extent to
which the search space was explored, as well as the amount
of effort expended on searching for form versus optimizing
forms.

3.3 Removing Non-Determinism
Removing sources of non-determinism was a central theme

to the development of PGE. The aim was to produce an al-
gorithm which would give the same results with each invo-
cation. To achieve this deterministic behavior, PGE makes
no use of random number generation. It performs the exact
same algorithmic steps given the same parameters and same
training data. PGE replaces the initialization, breeding and
selection mechanisms of GP. The first two are detailed here
and the selection policy is described in Section 3.4.

To determine the SR starting points, GP uses methods like
grow, full, and ramped half-and-half to randomly generate
initial equations. In contrast, PGE initializes a search with
a set of basis functions, such as c0∗xi, c0+c1∗xi, c0

xi
, and c0∗

f(xi). These starting points are the simplest functions and
are predetermined by the usable building blocks. Instead of
growing equations at the beginning, PGE starts with simple
functions, expanding them to reach new, unseen areas of the
search space.

To expand a candidate equation, PGE uses generating
functions derived from the grammar’s production rules. Gen-
erating functions are the deterministic replacement for the
non-deterministic genetic operators, crossover and mutation.
Each generation function corresponds to one or more of the
grammar’s production rules. The generation functions are

Figure 5: PGE Expansion Functions

func AddTerm(E Expr) {
E → E + c∗TERM
E → E + c∗N(TERM)

}
func WidenTerm(T Expr) {

T → T ∗ TERM
T → T ∗ N(TERM)
T → T / TERM
T → T / N(TERM)

}
func DeepenTerm(N Expr) {

N → N + c∗TERM
N → N + c∗N(TERM)
N → (c∗TERM) / N
N → N / (c∗TERM)

}

policies for how to expand and modify an equation’s parse
tree to obtain functions ‘close’ to the current one. New equa-
tions are produced by recursively applying the generating
functions over the parse tree. From a single tree, this pro-
cess produces a set of reachable equations within one step of
the input equation. As the production rules are applied re-
cursively, the current node’s type determines the appropriate
generation function(s) to apply. Listing 5 shows some exam-
ple generation functions. AddTerm increases the number of
terms in a summation, such as aX + bY ⇒ aX + bY + cZ.
WidenTerm increases the number of terms in a multipli-
cation, such as aXY 2 ⇒ aX2Y 2 or aXY 2 ⇒ aXY 2Z.
DeepenTerm increases the complexity of a term, such as
aXY ⇒ a(X + bZ)Y or aSin(X)⇒ aSin(X + Y).

Variations on the PGE expansion algorithm can be cre-
ated by parameterizing where and which generation func-
tions are applied to a candidate. By modifying the produc-
tions applied at each node, we can reduce or increase the set
of equations generated at each node of the tree, and thus
each point in the search space. In this paper, we used three
different expansion methods. The basic method (PGE-1) re-
stricts the grammar by removing productions which result
in non-distributed expressions like ax ∗ (b + cx ∗ (d + x2)).
It only uses AddTerm and WidenTerm during the recur-
sive expansion. The second method (PGE-2) adds back the
previously mentioned restriction, using all three generation
functions from Listing 5. This results in isomorphs which are
too ‘far’ apart for simplification rules to consider the same.
Despite being equivalent, these isomorphic forms can pro-
duce very different offspring, and represent separate areas
of the search space. The third method (PGE-3) is FFX in-
spired, but starts with only a set of univariate bases. These
bases are iteratively grown into a summation of multiplica-
tions by applying AddTerm and WidenTerm, creating can-
didates with more and increasingly complex bases. PGE-3
differs from the PGE-1 method by explicitly defining the
root node to be addition and placing stricter limitations on
the complexity of each term in the summation.

The initialization and generating functions, determine the
set of reachable expressions in a SR search. As with the
equations themselves, there is a trade-off between space and
complexity; how wide and how deep a search can explore.
The expansion methods discussed above enable PGE to re-
move non-determinism at the individual level. To fully re-
move non-determinism, and give direction to the search, the
selection strategy still needs to be replaced.

3.4 Directing the Search
SR seeks to optimizes both the parsimony and accuracy

of equations. PGE uses a priority queue to express which
points in the search space to expand next. By incorporat-
ing the Pareto non-dominated sort into a priority queue, the
PGE search can exploit and optimize the trade-off between
competing objectives in a deterministic order.

The Pareto Priority Queue
The Pareto Priority Queue (PPQ) is the deterministic

mechanism for controlling the search direction of PGE. The
PPQ replaces selection for mating with prioritized equa-
tions for expansion (selection for survival is unnecessary
since all equations are remembered). The PPQ is what
its name implies, a priority queue built on the Pareto non-
dominated sorting. The PPQ prioritizes expansion towards
those branches of the search space which balance size and
accuracy best. The PPQ removes the need for generations,
survivors, and mating pools, storing all explored equations
which have not been expanded. Our experimentations have
not shown this to be prohibitive. Consumed memory never
exceeded 500Mb, even in the face of hundreds of thousands
of unique equations.

To construct the PPQ, successive Pareto frontiers are ap-
pended onto a linear structure. Thus, the smallest equation
from the first Pareto front is at the head of the queue. The
next elements are the remainder of the first Pareto front in
increasing size. The remaining Pareto fronts follow a simi-
lar pattern. Priority is first given to the Pareto frontier and
then to size within the frontier. This is the same as Pareto
sorted array that results from the GP Pareto sort during
selection.

During processing, PGE removes the top p equations from
the PPQ in order to select the next areas to expand. By
doing so, PGE selects the p smallest equations from the first
Pareto frontier. This gives variation across the trade-offs for
which equations to expand, exploiting multiple paths in the
space simultaneously. If only the first (smallest) equation is
removed, search would progress through the space by size. If
p is too large, then overly complex equations are produced,
over fitting the data and causing bloat to ensue. Bloat in
PGE is the result of good solutions crowding the front of
the PPQ. As the search progresses, extraneous material is
added to candidates which has little effect on the accuracy
of the equation. This has a compounding effect, whereby the
extra material increases the number of expansion points of
the tree, creating even more similarly accurate expressions
with ineffectual sub-expressions.

PGE’s selection policy is deterministic. With each inde-
pendent PGE invocation, and each iteration, the same equa-
tions will be at the front of the queue. This means the same
equations will be expanded, the same productions will be
applied, and the same results will be returned.

Processing in PGE
In PGE, processing follows a deterministic execution path.

It uses no random number generation. Given a parameter
setting and training data, PGE will execute the same way
every time. Further, the PGE search algorithm only has
to be run once in order to obtain conclusive results. This
is an advantage over GP implementations, which are run
multiple times to produce statistically significant results for
the number of successful trials. PGE has no analogue to the
percentage of successful trials that GP has.

The PGE search proceeds as follows. Initialization gener-
ates a set of basis functions for each variable. These basis
functions are then memoized by the IPT, fit to the train-
ing data, evaluated on the testing data, and pushed into the
PPQ. The main PGE loop iteratively pops p equations from
the top of the PPQ for processing. Each of these equations
is expanded through recursive application of the generation
functions. The resulting equations are memoized using the
IPT. If the equation has been encountered before, it is dis-
carded. The remaining unique equations are fit to the train-
ing data with non-linear regression, evaluated on the test-
ing data, and pushed into the PPQ. PGE continues until a
model of desired accuracy is discovered or a computational
threshold is reached. Theoretically, PGE could explore the
entire space of representable equations given infinite space
and unlimited time.

Figure 6: The PGE Search Loop

PPQ = ∅
memoTree = ∅
func PGE Search (i n t p , GenerationFunc gFuncs ,

Data trainData , Data testData) {
bases = crea teBas i sFunct i ons ()
memoTree . i n s e r t (bases)
bases . F i t C o e f f i c e n t s (tra inData)
PPQ. push (bases)
bases . Evaluate (testData)

whi le (c h e c k s t o p p i n g c r i t e r i a () != stop)
new eqns = ∅
f o r i =0; i < p ; i++

top eqn = PPQ. pop ()
new eqns += Expand(top , gFuncs)

f o r e in new eqns
d i d i n s = memoTree . i n s e r t (e)
i f d i d i n s

e . F i t C o e f f i c e n t s (tra inData)
PPQ. push (e)
e . Evaluate (testData)

}

Parameters
PGE is nearly a parameter free algorithm, requiring only

that the building blocks, generating functions, the value of
p, and termination criteria be established prior to begin-
ning an equation search. Since building blocks are generally
established by the benchmarks, and stopping criteria are rel-
atively common across SR implementations, PGE has only
two unique parameters: (1) p, the number equations to re-
move from the PPQ and (2) which generation functions to
use. This is a substantial advantage over GP, which requires
many parameters to be set, a notoriously difficult task.

4. EXPERIMENTAL RESULTS
We evaluate PGE on 22 benchmarks from [24] and com-

pare results with the published results[17, 32]. We used 200
training points, 2000 testing points, and operator parame-
ters established in [24]. We performed our model searches
using a single core running on an Intel i5-2500k @ 3.30GHz
with 8 GB of memory. The PGE results in Table 1 were
obtained from 400 iterations with a p = 4. The PGE results
in Table 2 were obtained from 200 iterations with a p = 3.
Source code is available at github.com/verdverm/go-pge.

We compare PGE against published results of the SSC
and AEG algorithm described in Section 2. The SSC-T6 and
SSC-T7 errors in Table 1 are taken from Tables 6 and 7 in
[32]. The numbers are the average absolute error, obtained

Table 1: Benchmarks results for Nguyen problems
Problem SSC-T6 SSC-T7 PGE-1 PGE-2 PGE-3

Name Equation error error error time eqns error time eqns error time eqns

Nguyen-01 x3 + x2 + x 0.0035 0.003 0.000003 0.1s 67 0.000003 0.2s 131 0.000003 0.1s 73

Nguyen-02 x4 + x3 + x2 + x 0.0075 0.007 0.000004 1.2s 464 0.000004 0.6s 218 0.000004 0.3s 124

Nguyen-03 x5 + x4 + x3 + x2 + x 0.009 0.0095 0.000003 9.0s 2138 0.094944 9.8s 2240 0.000003 1.0s 386

Nguyen-04 x6 + x5 + x4 + x3 + x2 + x 0.013 0.011 0.107365 12.5s 2428 0.000005 12.2s 2361 0.000004 3.8s 1308

Nguyen-05 sin(x2) ∗ cos(x) − 1 0.0045 0.0045 0.000068 46.5s 10164 0.000014 278.1s 10032 0.000001 450.1s 18399

Nguyen-06 sin(x) + sin(x + x2) 0.0045 0.0035 0.011798 3.8s 2947 0.000446 805.5s 32079 0.000036 68.1s 6196

Nguyen-07 ln(x + 1) + ln(x2 + 1) 0.003 0.0035 0.002571 0.2s 131 0.000351 329.4s 25597 0.000251 1078.4s 23499

Nguyen-08 sqrt(x) 0.0065 0.005 0.000001 0.1s 21 0.000001 0.1s 116 0.000001 0.1s 78

Nguyen-09 sin(x) + sin(y2) 0.0264 0.0099 0.003898 1.0s 868 0.000001 60.0s 6519 0.000270 1461.5s 53721

Nguyen-10 2 ∗ sin(x) ∗ cos(y) 0.0122 0.0066 0.000002 1.5s 1233 0.000004 1.9s 461 0.000004 0.1s 174

Table 2: Benchmarks results for Korns problems
Problem AEG-T2 AEG-T4 PGE-1 PGE-2 PGE-3 Testing

Name Equation NLSE eqns NLSE eqns error eqns error eqns error eqns StdDev

Korns-01 1.57 + 24.3v 0.00 .15K 0.00 .06K 0.000000 .17K 0.000000 .47K 0.000000 .35K 709

Korns-02 0.23 + 14.2(v + y)/3w 0.00 3.26K 0.00 113.00K 0.027277 25.05K 0.0055 34.07K 0.1135 2.30K 165

Korns-03 −5.41 + 4.9(v − x + y/w)/3w 0.00 804.49K 0.00 222.46K 0.498 0.36K 0.0065 29.00K 0.1245 1.96K 1810

Korns-04 −2.3 + 0.13sin(z) 0.00 .59K 0.00 .86K 0.000000 .17K 0.000000 10.95K 0.000000 28.06K 0.093

Korns-05 3 + 2.13ln(w) 0.00 .25K 0.00 .16K 0.000000 .17K 0.000000 .48K 0.000000 .35K 2.154

Korns-06 1.3 + 0.13sqrt(x) 0.00 .13K 0.00 .01K 0.000000 .17K 0.000000 .48K 0.000000 .35K 0.215

Korns-07 213.809408(1 − e−0.547237x) 0.00 187.26K 0.00 4.10K 0.031941 8.37K 0.0075 53.08K 0.058696 9.45K 11487

Korns-08 6.87 + 11sqrt(7.23xvw) 0.00 5.99K 0.00 11.00K 0.021827 19.34K 0.000000 9.86K 0.069829 54.18K 2034

Korns-09 (sqrt(x)/ln(y)) ∗ (ez/v2) 0.00 97.24K 0.00 116.81K 0.1855 1.87K 0.000000 7.14K 0.0615 .70K 8735

Korns-10 0.81 + 24.3
2y+3z2

4v3+5w4 0.99 763.53K 0.00 1.34 M 0.055193 4.42K 0.008 78.19K 0.107 1.65K 2763

Korns-11 6.87 + 11cos(7.23x3) 1.00 774.89K 0.00 4.7 M 0.493 .17K 0.0055 8.33K 0.1195 2.62K 7.794

Korns-12 2 − 2.1cos(9.8x)sin(1.3w) 1.04 812.79K 1.00 16.7 M 0.117404 34.34K 0.0065 44.27K 0.124 1.67K 1.056

by selecting the best summed absolute error and dividing by
the number of sample points. This was done so that runs
with different number of sample points could be compared.
The errors in Table 2 here, for AEG-T2 and AEG-T4 are
from [17], Tables 2 and 4 respectively. These numbers are
the least squared errors normalized to the standard devia-
tion of the output variable. Since the errors in Table 2 are
not directly comparable due to differing error calculations,
we included the standard deviation of the output variable
from our testing data. Equations listed for AEG are total
number of equations evaluated before a solution was found
as reported in [17].

PGE-(1,2,3) are the three expansion variations discussed
in Section 3.3 The reported error numbers for PGE in both
tables are the average absolute error on the testing data.
The times reported in Table 1 are the amount of elapsed time
from the initial invocation of the PGE implementation until
the minimal error is reached. Reported equation counts are
the number unique equations evaluated when the minimum
was reached.

PGE solved all cases were the error was less than 0.0001,
meaning PGE returned the exact formula in the first Pareto
front. Numerical accuracy limitations and minor variations
in coefficient values preclude this error from reaching zero.
The amount of improvement in error is several orders of
magnitude over SSC, demonstrating PGE’s ability to hone
in on solutions. For the single and bimodal Nguyen prob-
lems, PGE solved all but one. For the five-variable Ko-
rns problems PGE solves 6 exactly, but did not solve the
other 6. PGE had difficulty with nested addition and non-
linear coefficients within non-linear functions. AEG required
larger numbers of equations for the same problems, so is
not surprising that PGE’s error values were larger for these
problems. Performance, however, is still good on the sim-
ple problems and shows they are tractable even with noisy
channels.

Comparing number of equations examined is more diffi-
cult. AEG equations reported are the total evaluated, while
PGE is the unique count. Due to PGE’s use of sorting and

canonical forms, the number of equations evaluated by PGE
would be much larger in an equivalent, unreduced space. It
is also likely that PGE overlooks portions of the expression
space through its simplifications and search space ordering.
We hope to determine the extent to which this happens and
further characterize the search space in future work.

PGE is also efficient, not only from the space reduction
but also in time. All searches ran to completion in under
30 minutes. Beyond this, the simple equations from both
test suites were often found very early in the search, and in
many cases finding the correct solution in just a few seconds.
These times are comparable to AEG which was reported as
taking 1-60 minutes to complete. In comparison, FFX runs
very quickly, returning results on 13 variable problems in
just 5-60 seconds. As was discussed in Section 2, its limita-
tions render it unable to find many of these benchmarks, so
we omitted further analysis. SSC times were not reported,
however, the reported errors were averaged over 100 trials.
Because PGE is deterministic, it does not have to be run
multiple times in this manner, creating a relative savings in
time.

5. CONCLUSIONS
As we aim for an algorithm that solves the SR problem

we must consider alternative implementations to the usual
GP. PGE is a deterministic SR implementation with ex-
actly reproducible results, using no random number genera-
tion. PGE replaces evolutionary methods with well defined
expansion rules and prioritizes the search with the Pareto
Priority Queue. PGE consolidates the space of equations
by merging isomorphs with sorting and simplification algo-
rithms. PGE further avoids duplication of effort by con-
sidering form once, through the use of abstract parameters,
non-linear regression, and memoization. This also allows
PGE to separate the search for form, from the optimization
of that form. PGE is effective, providing accurate results
and returning many exact solutions in a short amount of
time. Additionally, PGE only needs to be run once to pro-
vide statistically significant results.

As a deterministic algorithm, PGE may be useful for char-
acterizing the difficulty of problems, and the IPT can pro-
vide a new metric for measuring the search coverage. PGE
may also bring new insites on the nature of non-convexity
in SR problems.

We believe further progress can be made by incorporat-
ing the use of all-valid s-expression crossover and embedding
PGE into the AEG framework to make use of abstract vari-
ables and functions. Speedups may be realized, while main-
taining deterministic behavior by parallelizing the evalua-
tion of equations. We hope to provide validation on more of
the benchmarks as well as differential equations, invariants,
and other problems from domains beyond equations which
can be represented by an abstract grammar.

6. REFERENCES
[1] D.W. Corne, N.R. Jerram, J.D. Knowles, M.J. Oates, et al.

Pesa-ii: Region-based selection in evolutionary multiobjective
optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2001. Citeseer, 2001.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: Nsga-ii. Lecture notes in computer science,
1917:849–858, 2000.

[3] R.C. Eberhart, Y. Shi, and J. Kennedy. Swarm intelligence.
Morgan Kaufmann, 2001.

[4] M. Farach. Optimal suffix tree construction with large
alphabets. In Proceedings of the 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, pages 137–,
Washington, DC, USA, 1997. IEEE Computer Society.

[5] C.M. Fonseca, P.J. Fleming, et al. Genetic algorithms for
multiobjective optimization: Formulation, discussion and
generalization. In Proceedings of the fifth international
conference on genetic algorithms, volume 1, page 416. San
Mateo, California, 1993.

[6] N. Hoai, R.I. McKay, and HA Abbass. Tree adjoining
grammars, language bias, and genetic programming. Genetic
Programming, pages 157–183, 2003.

[7] N.X. Hoai. Solving the symbolic regression problem with
tree-adjunct grammar guided genetic programming: The
preliminary results. In In Proceedings of Congress on
Evolutionary Computation (CEC-2002), Hawai. Citeseer,
2002.

[8] N.X. Hoai and RI McKay. A framework for tree adjunct
grammar guided genetic programming. In Proceedings of the
Post-graduate ADFA Conference on Computer Science
(PACCS-2001), pages 93–99, 2001.

[9] J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched pareto
genetic algorithm for multiobjective optimization. In
Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE
Conference on, pages 82–87. IEEE, 1994.

[10] G.S. Hornby. Alps: the age-layered population structure for
reducing the problem of premature convergence. In Proceedings
of the 8th annual conference on Genetic and evolutionary
computation, pages 815–822. ACM, 2006.

[11] Maarten Keijzer. Improving symbolic regression with interval
arithmetic and linear scaling. In Conor Ryan, Terence Soule,
Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto
Costa, editors, Genetic Programming, Proceedings of
EuroGP’2003, volume 2610 of LNCS, pages 70–82, Essex,
14-16 April 2003. Springer-Verlag.

[12] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe. Spea2+:
Improving the performance of the strength pareto evolutionary
algorithm 2. In Parallel problem solving from nature-PPSN
VIII, pages 742–751. Springer, 2004.

[13] D. Kinzett, M. Johnston, and M. Zhang. How online
simplification affects building blocks in genetic programming.
In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 979–986. ACM, 2009.

[14] D. Kinzett, M. Zhang, and M. Johnston. Using numerical
simplification to control bloat in genetic programming.
Simulated Evolution and Learning, pages 493–502, 2008.

[15] M.F. Korns. Large-scale, time-constrained symbolic
regression-classification. Genetic Programming Theory and
Practice V, pages 53–68, 2008.

[16] M.F. Korns. Abstract expression grammar symbolic regression.
Genetic Programming Theory and Practice VIII, pages
109–128, 2011.

[17] M.F. Korns. Accuracy in symbolic regression. Genetic
Programming Theory and Practice IX, pages 129–151, 2011.

[18] M. Kotanchek, G. Smits, and E. Vladislavleva. Trustable
symbolic regression models: using ensembles, interval
arithmetic and pareto fronts to develop robust and trust-aware
models. Genetic Programming Theory and Practice V, pages
201–220, 2008.

[19] J Koza, R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[20] M.I.A. Lourakis. levmar: Levenberg-marquardt nonlinear least
squares algorithms in C/C++. [web page]
http://www.ics.forth.gr/~lourakis/levmar/, Jul. 2004.
[Accessed on 13 July. 2012.].

[21] S. Luke, L. Panait, et al. Lexicographic parsimony pressure. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 829–836, 2002.

[22] H. Majeed and C. Ryan. Using context-aware crossover to
improve the performance of gp. In Proceedings of the 8th
annual conference on Genetic and evolutionary computation,
pages 847–854. ACM, 2006.

[23] Trent McConaghy. Ffx: Fast, scalable, deterministic symbolic
regression technology. In Rick Riolo, Ekaterina Vladislavleva,
and Jason H. Moore, editors, Genetic Programming Theory
and Practice IX, Genetic and Evolutionary Computation,
pages 235–260. Springer New York, 2011.
10.1007/978-1-4614-1770-5-13.

[24] James McDermott, David R. White, Sean Luke, Luca Manzoni,
Mauro Castelli, Leonardo Vanneschi, Wojciech Jaskowski,
Krzysztof Krawiec, Robin Harper, Kenneth De Jong, and
Una-May O’Reilly. Genetic programming needs better
benchmarks. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference, GECCO ’12, pages 791–798, New York, NY, USA,
2012. ACM.

[25] R.I. Mckay, N.X. Hoai, P.A. Whigham, Y. Shan, and

M. OâĂŹNeill. Grammar-based genetic programming: a survey.
Genetic Programming and Evolvable Machines,
11(3):365–396, 2010.

[26] R.K. McRee. Symbolic regression using nearest neighbor
indexing. In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation, pages
1983–1990. ACM, 2010.

[27] J.F. Miller and P. Thomson. Cartesian genetic programming.
Lecture Notes in Computer Science, pages 121–132, 2000.

[28] Q. Nguyen, X. Nguyen, and M. OâĂŹNeill. Semantic aware
crossover for genetic programming: the case for real-valued
function regression. Genetic Programming, pages 292–302,
2009.

[29] G.R. Raidl. A hybrid gp approach for numerically robust
symbolic regression. Genetic Programming, pages 323–328,
1998.

[30] G. Smits and M. Kotanchek. Pareto-front exploitation in
symbolic regression. Genetic programming theory and practice
II, pages 283–299, 2005.

[31] A. Topchy and W.F. Punch. Faster genetic programming based
on local gradient search of numeric leaf values. In Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 155–162, 2001.

[32] N.Q. Uy, N.X. Hoai, M. O’Neill, RI McKay, and
E. Galván-López. Semantically-based crossover in genetic
programming: application to real-valued symbolic regression.
Genetic Programming and Evolvable Machines, 12(2):91–119,
2011.

[33] D.A. Van Veldhuizen and G.B. Lamont. Evolutionary
computation and convergence to a pareto front. In Late
Breaking Papers at the Genetic Programming 1998
Conference, pages 221–228, 1998.

[34] Peter Weiner. Linear pattern matching algorithms. In
Proceedings of the 14th Annual Symposium on Switching and
Automata Theory (swat 1973), SWAT ’73, pages 1–11,
Washington, DC, USA, 1973. IEEE Computer Society.

[35] E. Zitzler, M. Laumann, L. Thiele, E. Zitzler, E. Zitzler,
L. Thiele, and L. Thiele. Spea2: Improving the strength pareto
evolutionary algorithm, 2001.

	Introduction
	Related Work
	Prioritized Grammar Enumeration
	Organizing the Search Space
	Evaluating Forms Once
	Removing Non-Determinism
	Directing the Search

	Experimental Results
	Conclusions
	References

